Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(9): 1388-1397, 2023 09.
Article in English | MEDLINE | ID: mdl-37488225

ABSTRACT

Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.


Subject(s)
Biodiversity , Ecosystem , Calcium Carbonate , Carbonates
2.
Curr Biol ; 33(12): 2383-2396.e5, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37236182

ABSTRACT

The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.


Subject(s)
Biodiversity , Invertebrates , Oceans and Seas , Animals , Invertebrates/classification , Marine Biology , Pacific Ocean , Geologic Sediments
4.
Biodivers Data J ; 11: e105921, 2023.
Article in English | MEDLINE | ID: mdl-38318511

ABSTRACT

Background: Mesopelagic fish specimens from two stations in the NW African Upwelling were identified and catalogued to produce a Darwin Core-aligned dataset. A total of 9655 individual fishes were identified, with 9017 specimens identified at least to genus level and 3124 specimens identified to species level. This dataset comprises specimens collected from the 1990 RRS Discovery (III) Cruise D195 and was used to investigate depth-related trends in diversity and community composition alongside species-specific migratory behaviour. The finalised dataset was published on OBIS through the Deep-Sea node. New information: This dataset contains occurrence and abundance data for midwater fishes caught between the Mauritanian coast and Cape Verde, published for the first time. The dataset records 146 different fish taxa. Twenty-three taxa in the dataset are not present in any prior OBIS datasets that cover the area. These novel taxa are: Bathylagusandriashevi, Bolinichthysindicus, Bolinichthyssupralateralis, Cyclothoneparapallida, Dolichopteroidesbinocularis, Gigantactis indet. Gymnoscopelus stet., Howellaatlantica, Hygophumproximum, Hygophumtaaningi, Ichthyococcuspolli, Lampadenaanomala, Lampanyctuscuprarius, Lampanyctusisaacsi, Lampanyctuslineatus, Lampanyctusmacdonaldi, Lampanyctusnobilis, Lestidiopsmirabilis, Loweinarara, Macroparalepisbrevis, Melamphaesmicrops and Melanonusgracilis. An anglerfish specimen belonging to Linophrynidae was also found, the first in the leftvent family to be logged in the area on OBIS; however, the specimen was too damaged to identify beyond this level.

5.
Integr Zool ; 17(2): 326-327, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33415842
6.
PeerJ ; 9: e12352, 2021.
Article in English | MEDLINE | ID: mdl-34760373

ABSTRACT

In the age of global climate change and biodiversity loss there is an urgent need to provide effective and robust tools for diversity monitoring. One of the promising techniques for species identification is the use of DNA barcoding, that in Metazoa utilizes the so called 'gold-standard' gene of cytochrome c oxidase (COI). However, the success of this method relies on the existence of trustworthy barcode libraries of the species. The Barcode of Life Data System (BOLD) aims to provide barcodes for all existing organisms, and is complemented by the Barcode Index Number (BIN) system serving as a tool for potential species recognition. Here we provide an analysis of all public COI sequences available in BOLD of the diverse and ubiquitous crustacean order Amphipoda, to identify the barcode library gaps and provide recommendations for future barcoding studies. Our gap analysis of 25,702 records has shown that although 3,835 BINs (indicating putative species) were recognised by BOLD, only 10% of known amphipod species are represented by barcodes. We have identified almost equal contribution of both records (sequences) and BINs associated with freshwater and with marine realms. Three quarters of records have a complete species-level identification provided, while BINs have just 50%. Large disproportions between identification levels of BINs coming from freshwaters and the marine environment were observed, with three quarters of the former possessing a species name, and less than 40% for the latter. Moreover, the majority of BINs are represented by a very low number of sequences rendering them unreliable according to the quality control system. The geographical coverage is poor with vast areas of Africa, South America and the open ocean acting as "white gaps". Several, of the most species rich and highly abundant families of Amphipoda (e.g., Phoxocephalidae, Ampeliscidae, Caprellidae), have very poor representation in the BOLD barcode library. As a result of our study we recommend stronger effort in identification of already recognised BINs, prioritising the studies of families that are known to be important and abundant components of particular communities, and targeted sampling programs for taxa coming from geographical regions with the least knowledge.

7.
Zookeys ; 1031: 19-39, 2021.
Article in English | MEDLINE | ID: mdl-33958906

ABSTRACT

Amathillopsidae is a widely distributed, but rarely sampled family of deep-sea amphipods. During a recent expedition to the North Atlantic, specimens were filmed clinging to a polychaete tube in situ at abyssal depths by a Remote Operated Vehicle and then sampled for further study. The species was new to science and is described in detail herein. A barcode sequence is provided. Further investigations of photographic and video records revealed the genus Amathillopsis to be more widely distributed, both geographically and bathymetrically, than indicated by current literature records, and that these species occur at abyssal depths in all oceans. Specimens of Amathillopsis are reported clinging to a variety of different organisms whose erect structures provide the means to raise these charismatic deep-sea predators above the seafloor facilitating feeding opportunities.

8.
Zootaxa ; 4750(3): zootaxa.4750.3.10, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32230465

ABSTRACT

Falklandia Forster Platnick, 1985 was established for a genus of spider (Dysderoidea, Orsolobidae) in a paper published in July 1985. The homonymy with Falklandia De Broyer, 1985 (Lysianassoidea, Tryphosidae) published in October 1985 has been recognised only recently and requires a replacement name for the latter concept. An additional junior homonym, Falklandia Whatley, Chadwick, Coxhill Toy, 1987, is discussed by Brandão (in press).


Subject(s)
Arachnida , Spiders , Animals
9.
10.
Ecol Evol ; 9(24): 14167-14204, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938511

ABSTRACT

The deep-sea benthos covers over 90% of seafloor area and hosts a great diversity of species which contribute toward essential ecosystem services. Evidence suggests that deep-seafloor assemblages are structured predominantly by their physical environment, yet knowledge of assemblage/environment relationships is limited. Here, we utilized a very large dataset of Northwest Atlantic Ocean continental slope peracarid crustacean assemblages as a case study to investigate the environmental drivers of deep-seafloor macrofaunal biodiversity. We investigated biodiversity from a phylogenetic, functional, and taxonomic perspective, and found that a wide variety of environmental drivers, including food availability, physical disturbance (bottom trawling), current speed, sediment characteristics, topographic heterogeneity, and temperature (in order of relative importance), significantly influenced peracarid biodiversity. We also found deep-water peracarid assemblages to vary seasonally and interannually. Contrary to prevailing theory on the drivers of deep-seafloor diversity, we found high topographic heterogeneity (at the hundreds to thousands of meter scale) to negatively influence assemblage diversity, while broadscale sediment characteristics (i.e., percent sand content) were found to influence assemblages more than sediment particle-size diversity. However, our results support other paradigms of deep-seafloor biodiversity, including that assemblages may vary inter- and intra-annually, and how assemblages respond to changes in current speed. We found that bottom trawling negatively affects the evenness and diversity of deep-sea soft-sediment peracarid assemblages, but that predicted changes in ocean temperature as a result of climate change may not strongly influence continental slope biodiversity over human timescales, although it may alter deep-sea community biomass. Finally, we emphasize the value of analyzing multiple metrics of biodiversity and call for researchers to consider an expanded definition of biodiversity in future investigations of deep-ocean life.

11.
Zootaxa ; 4706(4): zootaxa.4706.4.10, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-32230526

ABSTRACT

The family Lepechinellidae has had a complex history; described under two names, subsumed into the Dexaminidae, resurrected, and most recently treated as a subfamily within the Atylidae (Lowry Myers 2017). Lepechinellidae, based on Lepechinella Stebbing, 1908 was raised by Schellenberg (1926) to replace Dorbanellidae Schellenberg, 1925 based on Dorbanella Chevreux, 1914. The family name Lepechinellidae was used in at least ten publications until Barnard (1970) transferred the two included genera, Lepechinella and Paralepechinella Pirlot, 1933, to the Dexamininae. This arrangement was accepted tacitly or overtly by subsequent authors until Bousfield and Kendall (1994) recognized the unique nature of Lepechinella and allied genera and grouped them as Lepechinellinae within the Atylidae. Andres Brandt (2001) provided evidence to justify recognition at the family level but Lowry Myers (2017) reverted to the Bousfield Kendall (1994) position. Jim Lowry (pers. comm.) recognises that the Andres Brandt (2001) paper was not consulted by Lowry Myers (2017) and that recognition of the family Lepechinellidae is justified.


Subject(s)
Amphipoda , Animals
12.
PLoS One ; 14(12): e0218904, 2019.
Article in English | MEDLINE | ID: mdl-31891586

ABSTRACT

Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.


Subject(s)
Classification/methods , Image Processing, Computer-Assisted/standards , Marine Biology/standards , Animals , Artificial Intelligence , Biodiversity , Data Curation/methods , Data Curation/standards , Databases, Factual , Ecology , Ecosystem , Image Processing, Computer-Assisted/methods , Marine Biology/classification
13.
Trends Ecol Evol ; 33(11): 803-805, 2018 11.
Article in English | MEDLINE | ID: mdl-30213659

ABSTRACT

The World Register of Marine Species (WoRMS) is a sustainable model of international collaboration around a centralised database that provides expert validated biodiversity data freely online. This model could be replicated for the over 1.2 million terrestrial and freshwater species to improve quality control and data management in biology and ecology globally.


Subject(s)
Aquatic Organisms/classification , Biodiversity , Databases, Factual , Informatics , Registries , Terminology as Topic
14.
Proc Biol Sci ; 285(1884)2018 08 01.
Article in English | MEDLINE | ID: mdl-30068675

ABSTRACT

An understanding of the balance of interspecific competition and the physical environment in structuring organismal communities is crucial because those communities structured primarily by their physical environment typically exhibit greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, using detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed, and thus conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we find temperature and bottom trawling intensity to be among the environmental factors significantly related to assemblage diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought about by climate change.


Subject(s)
Aquatic Organisms , Ecosystem , Fisheries , Animals , Atlantic Ocean , Climate Change , Phylogeny , Temperature
15.
Zookeys ; (750): 41-44, 2018.
Article in English | MEDLINE | ID: mdl-29692643

ABSTRACT

Wecomedon Jarrett & Bousfield, 1982 is reintroduced as a replacement name for Psammonyx Bousfield, 1973 (Crustacea: Amphipoda: Tryphosidae) which is a junior homonym of Psammonyx Döderlein, 1892 (Foraminifera: Astrorhizida: Ammovolummidae).

16.
Sci Total Environ ; 634: 1077-1091, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660864

ABSTRACT

For thousands of years humankind has sought to explore our oceans. Evidence of this early intrigue dates back to 130,000BCE, but the advent of remotely operated vehicles (ROVs) in the 1950s introduced technology that has had significant impact on ocean exploration. Today, ROVs play a critical role in both military (e.g. retrieving torpedoes and mines) and salvage operations (e.g. locating historic shipwrecks such as the RMS Titanic), and are crucial for oil and gas (O&G) exploration and operations. Industrial ROVs collect millions of observations of our oceans each year, fueling scientific discoveries. Herein, we assembled a group of international ROV experts from both academia and industry to reflect on these discoveries and, more importantly, to identify key questions relating to our oceans that can be supported using industry ROVs. From a long list, we narrowed down to the 10 most important questions in ocean science that we feel can be supported (whole or in part) by increasing access to industry ROVs, and collaborations with the companies that use them. The questions covered opportunity (e.g. what is the resource value of the oceans?) to the impacts of global change (e.g. which marine ecosystems are most sensitive to anthropogenic impact?). Looking ahead, we provide recommendations for how data collected by ROVs can be maximised by higher levels of collaboration between academia and industry, resulting in win-win outcomes. What is clear from this work is that the potential of industrial ROV technology in unravelling the mysteries of our oceans is only just beginning to be realised. This is particularly important as the oceans are subject to increasing impacts from global change and industrial exploitation. The coming decades will represent an important time for scientists to partner with industry that use ROVs in order to make the most of these 'eyes in the sea'.

17.
PLoS One ; 13(4): e0194599, 2018.
Article in English | MEDLINE | ID: mdl-29624577

ABSTRACT

The World Register of Marine Species (WoRMS) celebrated its 10th anniversary in 2017. WoRMS is a unique database: there is no comparable global database for marine species, which is driven by a large, global expert community, is supported by a Data Management Team and can rely on a permanent host institute, dedicated to keeping WoRMS online. Over the past ten years, the content of WoRMS has grown steadily, and the system currently contains more than 242,000 accepted marine species. WoRMS has not yet reached completeness: approximately 2,000 newly described species per year are added, and editors also enter the remaining missing older names-both accepted and unaccepted-an effort amounting to approximately 20,000 taxon name additions per year. WoRMS is used extensively, through different channels, indicating that it is recognized as a high-quality database on marine species information. It is updated on a daily basis by its Editorial Board, which currently consists of 490 taxonomic and thematic experts located around the world. Owing to its unique qualities, WoRMS has become a partner in many large-scale initiatives including OBIS, LifeWatch and the Catalogue of Life, where it is recognized as a high-quality and reliable source of information for marine taxonomy.


Subject(s)
Aquatic Organisms , Databases, Factual , Aquatic Organisms/classification , Biodiversity , Publications , Registries , Web Browser
18.
Zookeys ; (731): 1-53, 2018.
Article in English | MEDLINE | ID: mdl-29430208

ABSTRACT

Amphipod crustaceans were collected at all 55 stations sampled with an epibenthic sledge during two IceAGE expeditions (Icelandic marine Animals: Genetics and Ecology) in 2011 and 2013. In total, 34 amphipod families and three superfamilies were recorded in the samples. Distribution maps are presented for each taxon along with a summary of the regional taxonomy for the group. Statistical analyses based on presence/absence data revealed a pattern of family distributions that correlated with sampling depth. Clustering according to the geographic location of the stations (northernmost North Atlantic Sea and Arctic Ocean) can also be observed. IceAGE data for the Amphilochidae and Oedicerotidae were analysed on species level; in case of the Amphilochidae they were compared to the findings from a previous Icelandic benthic survey, BIOICE (Benthic Invertebrates of Icelandic waters), which also identified a high abundance of amphipod fauna.

19.
Zootaxa ; 4347(1): 1-30, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29245604

ABSTRACT

The deep-sea benthic hydroid fauna remains poorly known, in part because of less frequent sampling than the shelf fauna, in part owing to the immense study area, and partly also because available samples have been little studied by experts. In order to correct this, deep-sea benthic hydroid material from the modern Discovery Collections has been studied. Samples come from localities in the North-East Atlantic including the Porcupine Seabight, Porcupine Abyssal Plain, Rockall Trough, Rockall Bank, and the Mid-Atlantic Ridge. Sixteen species belonging to 12 families and 16 genera were found. Leptothecata are clearly dominant, being represented by 14 species; the remaining species belong to Anthoathecata. Lafoeidae and Tiarannidae are the most diverse families with three species each; the remaining families being represented by a single species. The low species diversity is remarkable at the generic level, with each genus being represented by a single species. Hydroid occurrence is low: twelve species were found in ≤ 9% of stations; Amphinema biscayana has the highest occurrence (27% of stations). Fifteen species were recorded in the Porcupine Seabight, two in the Rockall Trough, one at Rockall Bank, one on the Porcupine Abyssal Plain, and two at the Mid-Atlantic Ridge. The known bathymetric range for a third of the species is extended; the increase is particularly noteworthy in Amphinema biscayana, Acryptolaria crassicaulis, Clytia gigantea and Schizotricha profunda. Two distinct bathymetric groups are recognized: strictly deep-sea inhabitants and eurybathic species. Most species are globally distributed, some are widely distributed in the Atlantic, and others are limited to the North Atlantic or the Northeast Atlantic.


Subject(s)
Hydrozoa , Animals
20.
Ecology ; 97(4): 885-98, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27220205

ABSTRACT

Energy availability has long been recognized as a predictor of community structure, and changes in both terrestrial and marine productivity under climate change necessitate a deeper understanding of this relationship. The productivity-diversity relationship (PDR) is well explored in both empirical and theoretical work in ecology, but numerous questions remain. Here, we test four different theories for PDRs (More-Individuals Hypothesis, Resource-Ratio Theory, More Specialization Theory, and the Connectivity-Diversity Hypothesis) with experimental deep-sea wood falls. We manipulated productivity by altering wood-fall sizes and measured responses after 5 and 7 years. In November 2006, 32 Acacia sp. logs were deployed at 3203 m in the Northeast Pacific Ocean (Station Deadwood: 36.154098 degrees N, 122.40852 degrees W). Overall, we found a significant increase in diversity with increased wood-fall size for these communities. Increases in diversity with wood-fall size occurred because of the addition of rare species and increases of overall abundance, although individual species responses varied. We also found that limited dispersal helped maintain the positive PDR relationship. Our experiment suggests that multiple interacting mechanisms influence PDRs.


Subject(s)
Acacia/chemistry , Ecosystem , Wood , Models, Biological , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...